

Вибрационный датчик предельного уровня KYL-MSG301

Вибрационный сигнализатор предельного уровня сыпучих и жидких материалов

Обзор применений

Вибрационный датчик предельного уровня KYL-MSG301 представляет собой надежное устройство для определения уровня сыпучих материалов и жидкостей в различных емкостях и технологических линиях

Этот датчик используется для предотвращения переполнения и недолива материалов. Широко применяется для контроля уровня в бункерах, силосах, резервуарах и других емкостях. Его можно использовать для контроля уровня различных сыпучих материалов, таких как зерно, цемент, песок, а также жидкостей, включая воду, масла, химические реагенты и другие жидкости

Некоторые области применения:

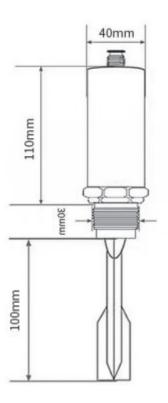
- Химическая промышленность: используются для измерения уровня химических жидкостей, обеспечивая контроль уровня и сигнализацию. Они необходимы для обеспечения точного управления уровнем жидкости в процессах химического производства и предотвращения переполнения или недостаточного заполнения. Эти датчики также могут использоваться для измерения потока среды в трубопроводах, улучшая контроль процессов.
- Нефтяная промышленность: применяются для измерения изменений уровня среды внутри резервуаров для хранения нефти, природного газа и других веществ. Они также могут использоваться для обнаружения потока в трубопроводах, обеспечивая точный контроль процессов добычи, хранения и транспортировки нефти
- Пищевая промышленность: широко применяются в пищевой промышленности для контроля уровня жидкостей в резервуарах, контейнерах и бочках. Они играют ключевую роль в таких процессах, как производство напитков, переработка фруктовых соков и производство молока, обеспечивая правильный уровень материалов во время производства.
- Системы водоснабжения питьевой водой: контролируют уровень воды в резервуарах или башнях, и когда уровень воды опускается ниже установленного порога, они активируют водяные насосы для обеспечения непрерывной подачи воды для бытовых нужд.

Принцип работы

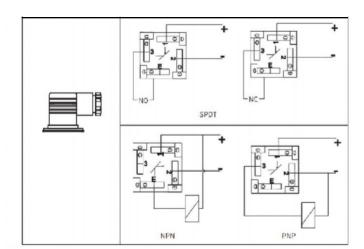
KYL-MSG301 использует вибрационную технологию для определения уровня материалов. В основе его работы лежит принцип измерения амплитуды колебаний, которые затухают при контакте с материалом. В случае отсутствия контакта с материалом, сенсор продолжает вибрировать с определенной частотой. Когда материал достигает уровня датчика, вибрации уменьшаются, что регистрируется устройством как достижение заданного уровня.

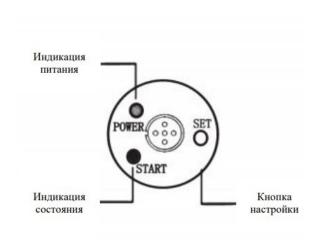
Преимущества

- Универсальность и адаптивность: Датчик может использоваться для контроля уровня различных материалов, от гранулированных до жидких, в широком диапазоне температур и давлений.
- Надежность и долговечность: Прочный корпус и устойчивость к воздействию агрессивных сред обеспечивают длительный срок службы устройства.
- Простота в эксплуатации: Устройство легко интегрируется в существующие системы управления процессами и не требует сложной калибровки.
- Минимальное обслуживание: Благодаря своей конструкции, датчик не требует частого обслуживания, что снижает эксплуатационные расходы.
- Широкая область применения: Подходит для использования в пищевой, химической, фармацевтической, строительной и других отраслях промышленности.


Основные особенности:

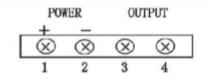
- Надежность: Корпус устройства выполнен из нержавеющей стали, что обеспечивает долгий срок службы даже в агрессивных средах.
- Универсальность: Датчик может использоваться для измерения уровня как сыпучих материалов (например, зерно, песок), так и жидкостей.
- Легкость установки и эксплуатации: Датчик легко монтируется в различные емкости и требует минимального обслуживания.




Технические характеристики

Тип датчика	Вибрационный датчи предельного уровня	
Материал корпуса	Нержавеющая сталь	
Диапазон рабочих температур	от -20°C до +80°C	
Частота вибрации	250 Гц	
Степень защиты	IP67	
Питание	24 B DC / 230 B AC	
Выходной сигнал	Реле (SPDT) или транзисторный выход	
Длина зонда	до 200 мм	
Bec	1,2 кг	
Совместимость с системами	PLC, SCADA	
Диапазон измерений	от 0,1 до 20 м	
Время отклика	< 1 c	
Электрическое подключение	Клеммные блоки	
Максимальная мощность нагрузки	5 Вт	
Максимальный ток	400 мА	
Тип монтажа	Резьбовое соединение	

Лицевая панель





Электрическая схема подключения

Номерконтакта	Назначение
1	Питание(+)
2	Питание(-)
3	Выходной сигнал
4	Общая линия(GND)

Условия функционирования

Температура окружающей среды(корпус)

Температура процесса

Макс. Нагрузка на зонды

Макс. крутящий момент

Макс. Давление в емкости Относительная влажность

Высота применения макс.

40°C..+65°C

 $40^{\circ} \text{C..} + \! 150^{\circ} \text{C}$ (опционально $40^{\circ} \text{C..} + \! 250^{\circ} \text{C})$

Боковая макс. 500Н

Защитные меры при сильных механических нагрузках: Установка

защитного козырька над зондом

250 Нм

16 бар

0-100%, подходит для использования на открытом воздухе

2.000 м

Техническое обслуживание и ремонт

Очистка

Запрещено использовать прибор в абразивных средах. Абразивное изнашивание вибрационной вилки может привести к выходу прибора из строя. При появлении такой необходимости очищайте вибрационную вилку. Очистка также возможна без демонтажа, например, CIP-очистка и SIP стерилизация.

Неисправности в процессе эксплуатации вибрационного датчика уровня KYL-MSG301

При эксплуатации радиочастотного емкостного датчика уровня могут возникать следующие виды неисправностей:

№ п/п	Неисправность	Причины	Решения
1	Ложные срабатывания	 Прилипание материала к поверхности зонда, вызывающее помехи сигнала. Существенные изменения температуры или влажности окружающей среды. Изменение диэлектрической проницаемости материала. 	 Регулярно очищать зонд. Подбирать оборудование, соответствующее условиям окружающей среды, или использовать компенсацию температуры и влажности. Настроить чувствительность в соответствии с материалом.
2	Отсутствие срабатывания или задержка сигнала	Повреждение зонда или плохой контакт проводки.Неполное покрытие зонда материалом.Слишком низкая чувствительность.	Проверить зонд и проводку, заменить поврежденные компоненты.Скорректировать положение установки.Повторно откалибровать чувствительность.
3	Электромагнитные помехи	- Воздействие сильных электромагнитных полей или других электрических устройств Плохое заземление или нестабильное электропитание.	 Разместить устройство подальше от источников помех или использовать экранирующие меры. Проверить заземление и электропитание.
4	Коррозия или износ зонда	- Воздействие агрессивных или абразивных материалов.	 Выбирать зонд из стойких к коррозии и износу материалов. Проводить регулярный осмотр и своевременно заменять изношенные компоненты.
5	Влияние температуры	- Эксплуатация в условиях экстремальных температур, выходящих за рабочий диапазон устройства.	 Использовать оборудование, подходящее для заданного температурного диапазона. Применять теплоизоляционные или охлаждающие меры.
6	Неправильная установка	Ошибочное расположение или угол установки зонда.Повреждение зонда или проводки при установке.	 Устанавливать зонд в соответствии с инструкцией. Защищать зонд и проводку от механических повреждений во время монтажа.
7	Проблемы с электропитанием	- Нестабильное напряжение питания или несоответствие его параметров требованиям устройства.	 Проверить напряжение питания и убедиться, что оно соответствует требованиям. Использовать стабилизированный источник питания.

Примечания:

- Таблица составлена с учетом типичных неисправностей и их решений для радиочастотного емкостного датчика уровня KYL-MSG301.
- Для предотвращения неисправностей рекомендуется соблюдать инструкции по эксплуатации и проводить регулярное техническое обслуживание.